Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 33: 642-654, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37650117

RESUMO

Loss of elastin due to aging, disease, or injury can lead to impaired tissue function. In this study, de novo tropoelastin (TE) synthesis is investigated in vitro and in vivo using different TE-encoding synthetic mRNA variants after codon optimization and nucleotide modification. Codon optimization shows a strong effect on protein synthesis without affecting cell viability in vitro, whereas nucleotide modifications strongly modulate translation and reduce cell toxicity. Selected TE mRNA variants (3, 10, and 30 µg) are then analyzed in vivo in porcine skin after intradermal application. Administration of 30 µg of native TE mRNA with a me1 Ψ modification or 10 and 30 µg of unmodified codon-optimized TE mRNA is required to increase TE protein expression in vivo. In contrast, just 3 µg of a codon-optimized TE mRNA variant with the me1 Ψ modification is able to increase protein expression. Furthermore, skin toxicity is investigated in vitro by injecting 30 µg of mRNA of selected TE mRNA variants into a human full-thickness skin model, and no toxic effects are observed. Thereby, for the first time, an increased dermal TE synthesis by exogenous administration of synthetic mRNA is demonstrated in vivo. Codon optimization of a synthetic mRNA can significantly increase protein expression and therapeutic outcome.

2.
Biomater Adv ; 137: 212824, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929239

RESUMO

Artificial lungs, also known as oxygenators, allow adequate oxygenation of the blood in patients with severe respiratory failure and enable patient survival. However, the insufficient hemocompatibility of the current of artificial lungs hampers their long-term use. Therefore, in this study, a novel strategy was developed to efficiently endothelialize blood-contacting surfaces to improve their hemocompatibility. Hollow fiber membranes (HFMs) were functionalized with dibenzylcyclooctyne (DBCO), and endothelial cells were glycoengineered for covalent conjugation to DBCO by a copper-free click reaction. Metabolic glycoengineering using azidoacetylmannosamine-tetraacylated (Ac4ManNAz) resulted in highly efficient functionalization of endothelial cells with azide (N3) molecules on the cell surface without negative impact on cell viability. After 48 h, significantly improved endothelialization was detected on the HFM surfaces functionalized with DBCO compared to unmodified HFMs. Endothelial cells were responsive to inflammatory stimulus and expressed adhesion-promoting molecules (E-selectin, VCAM-1, and ICAM-1). Furthermore, the hemocompatibility of HFMs was analyzed by dynamic incubation with fresh human blood. DBCO-coated and uncoated HFMs showed a comparable hemocompatibility, but the endothelialization of HFMs significantly reduced the activation of blood coagulation and platelets. Interestingly, the incubation of endothelialized HFMs with human blood further reduced the expression of E-selectin and VCAM-1 in endothelial cells. In this study, a highly efficient, cell-compatible method for endothelialization of artificial lungs was established. This click chemistry-based method can be also applied for the endothelialization of other artificial surfaces for tissue engineering and regenerative medicine applications.


Assuntos
Selectina E , Molécula 1 de Adesão de Célula Vascular , Alcinos , Compostos de Benzil , Química Click , Selectina E/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Pulmão , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
Sensors (Basel) ; 20(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881749

RESUMO

During open-heart surgery, the status of hemostasis has to be constantly monitored to quickly and reliably detect bleeding or coagulation disorders. In this study, a novel optimized piezo-based measuring system (PIEZ) for rheological monitoring of hemostasis was established. The applicability of the PIEZ for the evaluation of nucleic acid-based drugs influencing coagulation was analyzed. Thrombin aptamers such as NU172 might be used during extracorporeal circulation (ECC) in combination with a reduced heparin concentration or for patients with heparin-induced thrombocytopenia (HIT). Therefore, the effect of the coagulation inhibiting thrombin aptamer NU172 and the abrogation by its complementary antidote sequence (AD) were investigated by this rheological PIEZ system. After the addition of different NU172 concentrations, the coagulation of fresh human blood was analyzed under static conditions and using an in vitro rotation model under dynamic conditions (simulating ECC). The clotting times (CTs) detected by PIEZ were compared to those obtained with a medical reference device, a ball coagulometer. Additionally, after the circulation of blood samples for 30 min at 37 °C, blood cell numbers, thrombin markers (thrombin-antithrombin III (TAT) and fibrinopeptide A (FPA)) and a platelet activation marker (ß-thromboglobulin (ß-TG)) were analyzed by enzyme-linked immunosorbent assays (ELISAs). The increase of NU172 concentration resulted in prolonged CTs, which were comparable between the reference ball coagulometer and the PIEZ, demonstrating the reliability of the new measuring system. Moreover, by looking at the slope of the linear regression of the viscous and elastic components, PIEZ also could provide information on the kinetics of the coagulation reaction. The shear viscosity at the end of the measurements (after 300 s) was indicative of clot firmness. Furthermore, the PIEZ was able to detect the abrogation of coagulation inhibition after the equimolar addition of NU172 aptamer´s AD. The obtained results showed that the established PIEZ is capable to dynamically measure the hemostasis status in whole blood and can be applied to analyze nucleic acid-based drugs influencing the coagulation.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Ácidos Nucleicos/farmacologia , Adulto , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Contagem de Células Sanguíneas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Coagulação do Sangue Total
4.
J Biol Eng ; 13: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31168319

RESUMO

The application of synthetic modified messenger RNA (mRNA) is a promising approach for the treatment of a variety of diseases and vaccination. In the past few years, different modifications of synthetic mRNA were applied to render the mRNA more stable and less immunogenic. However, the repeated application of synthetic mRNA still requires the suppression of immune activation to avoid cell death and to allow a sufficient production of exogenous proteins. Thus, the addition of type I interferon (IFN) inhibiting recombinant protein B18R is often required to avoid IFN response. In this study, the ability of B18R encoding mRNA to prevent the immune response of cells to the delivered synthetic mRNA was analyzed. The co-transfection of enhanced green fluorescent protein (eGFP) mRNA transfected fibroblasts with B18R encoding mRNA over 7-days resulted in comparable cell viability and eGFP protein expression as in the cells transfected with eGFP mRNA and incubated with B18R protein. Using qRT-PCR, significantly reduced expression of interferon-stimulated gene Mx1 was detected in the cells transfected with B18R mRNA and stimulated with IFNß compared to the cells without B18R mRNA transfection. Thereby, it was demonstrated that the co-transfection of synthetic mRNA transfected cells with B18R encoding mRNA can reduce the IFN response-related cell death and thus, improve the protein expression.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30062094

RESUMO

Hemocompatibility of blood-contacting biomaterials is one of the most important criteria for their successful in vivo applicability. Thus, extensive in vitro analyses according to ISO 10993-4 are required prior to clinical applications. In this review, we summarize essential aspects regarding the evaluation of the hemocompatibility of biomaterials and the required in vitro analyses for determining the blood compatibility. Static, agitated, or shear flow models are used to perform hemocompatibility studies. Before and after the incubation of the test material with fresh human blood, hemolysis, cell counts, and the activation of platelets, leukocytes, coagulation and complement system are analyzed. Furthermore, the surface of biomaterials are evaluated concerning attachment of blood cells, adsorption of proteins, and generation of thrombus and fibrin networks.

6.
Mol Ther Nucleic Acids ; 11: 475-484, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858082

RESUMO

Elastin is one of the most important and abundant extracellular matrix (ECM) proteins that provide elasticity and resilience to tissues and organs, including vascular walls, ligaments, skin, and lung. Besides hereditary diseases, such as Williams-Beuren syndrome (WBS), which results in reduced elastin synthesis, injuries, aging, or acquired diseases can lead to the degradation of existing elastin fibers. Thus, the de novo synthesis of elastin is required in several medical conditions to restore the elasticity of affected tissues. Here, we applied synthetic modified mRNA encoding tropoelastin (TE) for the de novo synthesis of elastin and determined the mRNA-mediated elastin synthesis in cells, as well as ex vivo in porcine skin. EA.hy926 cells, human fibroblasts, and mesenchymal stem cells (MSCs) isolated from a patient with WBS were transfected with 2.5 µg TE mRNA. After 24 hr, the production of elastin was analyzed by Fastin assay and dot blot analyses. Compared with untreated cells, significantly enhanced elastin amounts were detected in TE mRNA transfected cells. The delivered synthetic TE mRNA was even able to significantly increase the elastin production in elastin-deficient MSCs. In porcine skin, approximately 20% higher elastin amount was detected after the intradermal delivery of synthetic mRNA by microinjection. In this study, we demonstrated the successful applicability of synthetic TE encoding mRNA to produce elastin in elastin-deficient cells as well as in skin. Thus, this auspicious mRNA-based integration-free method has a huge potential in the field of regenerative medicine to induce de novo elastin synthesis, e.g., in skin, blood vessels, or alveoli.

7.
Molecules ; 22(6)2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594360

RESUMO

Nucleic acid ligands, aptamers, harbor the unique characteristics of small molecules and antibodies. The specificity and high affinity of aptamers enable their binding to different targets, such as small molecules, proteins, or cells. Chemical modifications of aptamers allow increased bioavailability. A further great benefit of aptamers is the antidote (AD)-mediated controllability of their effect. In this study, the AD-mediated complexation and neutralization of the thrombin binding aptamer NU172 and Toll-like receptor 9 (TLR9) binding R10-60 aptamer were determined. Thereby, the required time for the generation of aptamer/AD-complexes was analyzed at 37 °C in human serum using gel electrophoresis. Afterwards, the blocking of aptamers' effects was analyzed by determining the activated clotting time (ACT) in the case of the NU172 aptamer, or the expression of immune activation related genes IFN-1ß, IL-6, CXCL-10, and IL-1ß in the case of the R10-60 aptamer. Gel electrophoresis analyses demonstrated the rapid complexation of the NU172 and R10-60 aptamers by complementary AD binding after just 2 min of incubation in human serum. A rapid neutralization of anticoagulant activity of NU172 was also demonstrated in fresh human whole blood 5 min after addition of AD. Furthermore, the TLR9-mediated activation of PMDC05 cells was interrupted after the addition of the R10-60 AD. Using these two different aptamers, the rapid antagonizability of the aptamers was demonstrated in different environments; whole blood containing numerous proteins, cells, and different small molecules, serum, or cell culture media. Thus, nucleic acid ADs are promising molecules, which offer several possibilities for different in vivo applications, such as antagonizing aptamer-based drugs, immobilization, or delivery of oligonucleotides to defined locations.


Assuntos
Aptâmeros de Nucleotídeos/sangue , Receptor Toll-Like 9/sangue , Anticoagulantes/sangue , Anticoagulantes/química , Antídotos/química , Aptâmeros de Nucleotídeos/química , Coagulação Sanguínea/genética , Humanos , Ligantes , Técnica de Seleção de Aptâmeros , Trombina/química , Trombina/genética , Receptor Toll-Like 9/química
8.
Drug Test Anal ; 7(4): 300-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24817283

RESUMO

Aptamers are synthetic single-stranded DNA (ssDNA) molecules with the ability to fold into complex three-dimensional structures. They can bind their targets with a high selectivity and affinity, thus they have an enormous potential as therapeutic agents. However, since aptamers are synthetic and especially since certain sequences can increasingly bind to the pattern recognition receptors of the immune cells when applied in vivo, they can induce an immune activation. Here, we established a real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) based assay to evaluate aptamers-induced immune activation prior to in vivo studies. Human whole blood or plasmacytoid dendritic cell line (PMDC05) were incubated with CpG, R10-60 aptamer, start library, or a CpG containing aptamer. After 2 and 4 h, cytokine expression was measured using qRT-PCR to determine immune reaction against different aptamers. CpG containing a phosphorothioate backbone led to a significant up-regulation of CCL-7, IFN-1α, IFN-1ß in whole blood after 4 h. Compared to the samples without ssDNA, significantly higher TNF-α expression was detected after the R10-60 aptamer incubation for 4 h. The stimulation of PMDC05 cells with different ssDNA enabled more sensitive detection of aptamer sequence specific immune activation. After 4 h, CpG led to a significantly higher expression of CCL-8, CXCL-10, IL-1ß, IL-6, IL-8, IFN-1ß, and TNF-α. R10-60 aptamer caused a significant up-regulation of IL-1ß, IFN-1ß, and TNF-α. Negative control aptamers did not induce an immune activation. The use of this assay before starting with in vivo studies will facilitate the in vitro prediction of immune activation potential of aptamers.


Assuntos
DNA de Cadeia Simples/imunologia , DNA de Cadeia Simples/uso terapêutico , Imunidade/imunologia , Biomarcadores/sangue , Citocinas/sangue , Citocinas/imunologia , Células Dendríticas/imunologia , Humanos , Técnicas In Vitro , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...